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Abstract. This survey presents a new classification of the state of the art ap-
proaches to electroencephalography-based brain-computer interfaces, resulting
in twelve EEG-based BCI paradigms. A historical overview of the BCIs was in-
cluded as complementary information. This work also presents the corresponding
description and features of each approach. Also, this survey presents a compari-
son of the most popular electroencephalography recording methods, highlighting
their advantages and showing their disadvantages. In order to clarify the similar-
ities and differences of the analyzed approaches and systems, two comparative
tables are presented, one for the paradigms and one for the recording systems.
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1 Introduction

Brain-computer interfaces (BCI) are real-time computer-based systems that translate
brain signals into predefined and useful commands that can improve the human-computer
interaction as well as improve the communication with other people [10,17]. BCIs are
commonly developed to provide an alternative communication tool for people with
severe neuromuscular disorders such as amyotrophic lateral sclerosis, spinal cord injury,
and brainstem stroke [10]. There are several methods to acquire useful data from the
brain, those methods could be invasive or non-invasive. Some examples of the invasive
methods are the electrocorticography (ECoG) and the microelectrode arrays (MEAs).
On the other side, non-invasive methods are the widely used due to its noninvasive-
ness, high temporal resolution, portability and reasonable cost [10,33], this category
includes electroencephalography (EEG), magnetoencephalography (MEG), functional
magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS), being the
non-invasive EEG-based BCIs the objective of this survey, this approach is the most
widely researched due to their minimal risk and the relative convenience of conducting
studies and recruiting participants [17].

The purpose of this survey is to analyze the different approaches reported in the
state-of-the-art brain-computer interfaces, as well as present an updated classification
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of these approaches, this work does not aim to present the results of the different
paradigms, however the results of the papers that belongs to each paradigm were eval-
uated in depth. This survey is organized as follows: First, the State of The Art section
presents a historical point of view. Second, an analysis of all the existing EEG-based
paradigms is presented in the Paradigms of EEG-based BCIs section, based on the
proposals of Cervantes et al. [4], Fernandez-Fraga et al. [6] and Hwang et al. [10],
adding some updates and a summary table of paradigms and their corresponding de-
scription. Third, the section Data Acquisition presents a summary of the actual EEG
recording methods used in EEG-based BCIs. The last sections contain Conclusions and
References.

2 A Short History of Brain-Computer Interfaces

In 1988, Farwell and Donchin [5] presented the first P300-based BCI, they measured
a positive potential in the EEG about 300 ms after the subject attended the target
stimulus, this potentials serves as the control signal. The stimulus that elicit the P300
is detected by averaging the EEG responses to relatively rare presentations of the target
stimulus interspersed with several non-target stimuli [6,21]. The Farwell and Donchin
experiments consisted in a 6 x 6 matrix, that contained letters and other symbols, the
subjects could select items from the matrix by the average response to the flash of
the target item, which differed from the average responses to the other items [6]. Many
P300-based studies have been published [3,10,16,20,21,26,28]. The P300 potentials can
also be elicited by auditory stimuli and several research groups have explored this option
[8,15,13].

Another approach to brain-computer interfaces explodes the sensorimotor rhythms
(SMRs) as control signals in the BCI. This approach was first reported by Wolpaw et al.
in 1991 [31]. SMR signals are µ and β oscillations, that are recorded over sensorimo-
tor cortices, the µ and β oscillations change in amplitude with movement, imagined
movement or preparation for movement [6]. SMR-based BCIs can control a cursor
to hit targets on a screen or perform several computer-based tasks, users can learn
how to control the SMR amplitudes by increasing or decreasing the amplitude of the
rhythms. Many of the works with SMR-based BCIs consist in asking the user to gener-
ate specific mental states (by imagining physical movement), which is commonly called
motor imagery (MI). Several research articles have been published around this approach
[2,12,27,30,31].

Over time new approaches and techniques emerged, such as visually-evoked poten-
tials (VEPs), steady-state visually evoked potentials (SSVEPs), error-related potentials
(ErrPs), each of these having sub-categories with important results [10]. VEPs and
SSVEPs are based in potentials that are elicited by visual content, the first approach
to the analysis of these potentials was reported by Sutter E. [25] in 1992, and his
publication was followed by many others in the area [1,11,20,24,23,29].

Successful brain-computer interfaces systems are commonly an hybrid between var-
ious paradigms, typically researchers try to eliminate the weaknesses of one approach
by combining the strengths of various approaches.
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In 2012, Spüler presents an hybrid BCI based on visually evoked potentials and
improving the performance with an adaptation based on error-related potentials [24].
This decade shows a trend in the research of this hybrid systems can be seen: Yin et al.
proposed a hybrid BCI that incorporates SSVEP into the P300 paradigm [32], also Li et
al. reported an controlled wheelchair by combining P300 and SSVEP paradigms [14].
Most recent works in hybrid BCIs are interesting too, in 2019, Niknamian S. proposed
a hybrid system between SSVEP and P300 to enhance the accuracy of a speller system
[19]. Also, in 2019, Machado M. presented a hybrid system that combines visual and
auditory stimuli [15]. In late 2019, Oralhan Z. published a paper with another hybrid
method, an approach for a speller BCI based on P300 and SSVEP.

3 Paradigms of EEG-based BCIs

BCI systems may be classified in two main categories: endogenous and exogenous
systems [4]. Endogenous systems are dependent of the user’s ability to control their
electrophysiological activity, sensorimotor rhythms (motor imagery or MI) based sys-
tems and Slow Cortical Potential (SCP) based systems belong to this category. MI
systems are based on the imagery of performing motor actions to evoke signals similar
to those observed in actual movement and SCP systems involve slow changes in voltage
generated on the cerebral cortex, with a duration between 0.5 s and 10 s, SCP-based
systems are also associated with movement. Endogenous systems require a period of
intensive training [6]. The exogenous systems obtain the data from evoked related po-
tentials (ERP), these systems depends on the electrophysiological activity triggered by
external stimuli [6]. Exogenous systems are easily to master than endogenous systems
and are based in the acquisition of data from evoked related potentials (ERP): P300
events, visual evoked potentials (VEP), steady-state visual evoked potentials (SSVEP)
or auditory evoked potentials (AEP).

Also, BCI systems may be classified according to the experimental paradigm em-
ployed to elicit different kinds of brain activities [6,10]. Hwang et al. [10] proposed
the following seven categories: motor imagery, visual P300, steady-state visual evoked
potential (SSVEP), non-motor mental imagery, auditory, hybrid and other paradigms.
Hwang et al. includes covert attention, motion-onset visual evoked potentials (MOVEP),
flash onset and offset visual evoked potentials (FOVEP), and error related potentials in
their ”other paradigms” section. Fernandez-Fraga et al. [6] proposed a little different
classification with five categories: evoked potential by P300 events, visually evoked po-
tential (VEP), steady-state visual evoked events (SSVEP) and auditory evoked potential
(AEP). Table 1 summarizes all the paradigms and its corresponding description.

4 Data Acquisition

A functional EEG-based BCI requires reliable, robust and high-quality EEG recording
systems. There are several varieties of recording methods, the standard recording uses
wet electrodes. Wet electrodes use a conductive gel that maintains good electrode con-
tact with the scalp, what provides an excellent EEG recording. Unfortunately, wet elec-
trodes are not optimal or practical for long-term daily use, this kind of electrodes require
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Table 1. Summary of the existing BCI paradigms. The table presents a short description of each
paradigm. The listed paradigms are not necessarily different, some paradigms in the table are
subsets of others but they have characteristics that must be distinguished.

Paradigm Description

Motor imagery
Based on the imagery of performing motor actions to evoke signals in the brain.
Commonly consists in the imagination of kinesthetic movements of several parts
of the body. The origin of the signals depends on the imagined activity.

P300 Events

Works over event-related potentials evoked by infrequent and task-relevant stimuli.
Some of the stimulus have a relationship with the intention of the subject.
The potential appears around 300 ms after each stimulus. These signals are
measured most strongly in the parietal lobe.

Visual P300
Visual P300 is a kind of P300 event-related potential, with the difference that the
stimuli are strictly visual.

VEP
Visually evoked potentials are detected on the EEG after the presentation of the
visual stimulus. These kind of responses are usually originate from the occipital
cortex of the brain.

SSVEP

Steady-state visual evoked potential is a periodic brain response evoked by a
special stimuli: repetitive presentation of flickering or reversing visual stimulus.
These potentials are also detected on the EEG after the presentation of the visual
stimulus.

Non-motor MI
Consists in mental imagery tasks excluding motor imagery tasks. Mental
calculations, remember images or faces, internal singing or speech and spatial
navigation are good examples of the stimuli in this paradigm.

AEP

Auditory event potentials are perceived after the presentation of the auditory
stimulus, commonly sounds at different frequencies, when the subject
concentrates on any of them, a potential of the same frequency as the stimulus
is generated.

Covert attention
Covert attention is defined as paying attention without moving the eyes to the
point of that location. These tasks often require participants to observe a
number of stimuli, but attend only one.

MVEP
Motion onset/offset visual evoked potentials are visual evoked potentials related
to global motion during a visual motion discrimination task. These tasks consist
in the discrimination of onset or offset motion in the stimuli.

FVEP
Flash onset/offset visual evoked potentials are the signals generated by a flashing
stimuli, such as digits or letters that are displayed on a screen. Subjects can shift
their gaze to the flashing target to induce a FVEP.

ErrP
Error related potentials (ErrPs) are the responses generated by the brain when
the subject recognizes an error during a task. ErrPs are widely studied for error
correction or adaptation in BCIs.

Hybrid
This category includes the simultaneous use of more than two paradigms mentioned
in this table.
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a careful application; the gel is sometimes messy and needs periodic replenishment; the
cap or other apparatus that hold the electrodes in their side may be uncomfortable,
awkward or unattractive [17]. Furthermore, wet electrode-based EEG systems are sus-
ceptible to a variety of artifacts due to the non-brain activity, such as electromyographic
signals (EMG), bodily movements or nearby electrical equipment [17].

Table 2. Summary of EEG recording methods. The first column indicates the commercial name
of the recording system as well as its model, the second column describes the type of electrodes
that the system uses, the third column presents a set of advantages taken from several papers
where these systems were used and the fourth column presents disadvantages reported in the
literature.

System Type of electrode Advantages Disadvantages

BioSemi ActiveTwo Active wet

Excellent EEG recording quality
Up to 280 channels
Does not limit electrode location
Very low impedance

Uncomfortable
Not optimal for long-term use
Very expensive

Emotiv EPOC Moistened felt pads

Semi-rigid support
Fast electrode placement
Low-cost
14 channels

Less accurate than wet methods
Restricted electrode placement
Susceptible to EMG signals

g.SAHARA Active dry

Does not limit electrode location
Similar quality to wet electrodes
Easy to use
8-64 channels

Could be uncomfortable

g.SCARABEO Wet
Excellent EEG recording
Does not limit electrode location
8-64 channels

Messy conductive gel
Sensible to noise
Not optimal for long-term use

B-Alert X10 Wet
Good EEG recording quality
Ambulatory
Does not limit electrode location

Maximum 9 channels

Wearable Sensing
DSI-Hybrid

Active dry

Easy to use
Fast electrode placement
Similar quality to wet electrodes
Analyzes BOLD actibity

Non-cosmetic
Could be uncomfortable
Awkward

QUASAR DSI
10/20

Dry

Comfortable
Ambulatory
Long-term comfort
21 channels

Less accurate than wet methods
Awkward
Non-cosmetic

4.1 Electrode Types

Due to the weaknesses of the wet electrode-based EEG recordings, several wet alterna-
tives as well as dry electrodes have appeared in the last decade. One of the most used
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EEG recording system is the Emotive EPOC: a 14-channel system that uses moistened
felt pads instead the common conductive gels, mounted on a semi-rigid support that
allows a quick and comfortable placement of the electrodes, but is less accurate than the
conventional supports. Emotive EPOC systems are relatively cheap in comparison with
other recording systems. An alternative to wet electrodes is the g.SAHARA system,
a dry electrode that consists of a set of 8 pins, which mounted in a conventional cap
does not limit electrode locations and provide similar results to the systems that uses
wet electrodes. The BioSemi ActiveTwo systems use active wet electrodes, and provide
excellent EEG recording quality, these systems allow up to 280 channels. Nijboer et al.
[18] reported that a 32 channel version produced a P300-based accuracy higher than
the g.SAHARA and EPOC systems. The EPOC and g.SAHARA electrodes rely on low
impedance resistive contact with the scalp, while the dry electrodes of the QUASAR
systems use a hybrid combination of high impedance resistive and capacitive contact
with the scalp [22]. Hairston et al. reported that the EPOC and QUASAR systems could
produce uncomfortable pressure points and movement artifacts [7], they also reported
that dry electrode-based systems can be more difficult to secure to the scalp, crating
a trade-off between comfort and recording quality. Table 2 summarizes several EEG
recording systems, classified by the type of electrodes they use.

4.2 Electrode Holders

On the other hand, the device that holds the recording electrodes on the scalp is ex-
tremely important in the long-term home use. An ideal electrode holder device should
allows electrodes to be accurately positioned in the scalp, allowing every possible posi-
tion and ensuring that the electrodes will be firmly placed, all of this without sacrificing
comfort and being non-intrusive and cosmetic. ”Insecure electrode placement can lead
to noise due to sudden changes in impedance (”electrode pops”) and variable placement
can increase day-to-day variations in the EEG features used by a BCI”, McFarland and
Wolpaw [17] say.

5 Conclusions

Although the main focus of this survey is to establish a new classification of the exist-
ing paradigms to build brain-computer interfaces, the systems that use invasive EEG-
recordings were not treated in depth. The invasive techniques that uses epidural or
subdural electrodes or intracortical microelectrodes have more disadvantages than ad-
vantages. Although these techniques offer more secure placement and better spatial
resolution that non-invasive techniques, their invasive nature and increased costs and
risks are not well justified since there are methods with zero-invasiveness that can
produce comparable quality and target acquisition times [17], making them a more
viable, economical and accurate option. In addition, these invasive methods have not
yet demonstrated reliable long term stability [9].

Focusing on the non-invasive methods, which are primarily treated in this survey
(due to its excellent invasiveness-quality-price ratio), the trend is that these systems
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sometimes sacrifice comfort for quality and vice versa, and sometimes sacrifice acces-
sibility for quality and accuracy as in BioSemi systems (which are very expensive).
The Emotiv EPOC systems are less accurate than conventional electrode holders and
restricts the possible electrode placements in the scalp, what results in a higher sus-
ceptibility to EMG contamination but that disadvantages are compensated by their
connectivity, comfort, cosmetic design and relatively low cost. Newer technology as
the g.SAHARA dry electrodes can provide a similar results to those provided by wet
electrodes by sacrificing comfort and aesthetic. The g.SCARABEO systems provide an
excellent EEG recording, with a good channel range and permissive electrode location,
but is slower to set up when comparing with other systems and the conductive gel could
be messy, resulting in a non-suitable system for long therm use. The selection of any
acquisition technique will depends on a balance of a variety of variables: target quality,
noise tolerance, comfort, long-term capabilities and budget.

Most EEG-based BCIs use evoked potentials as the control signals, primarily P300
evoked potential, sensorimotor rhythms or steady-state visual evoked potentials. Even
so, there are several interesting approaches such as non-motor mental imagery, auditory
evoked potentials or error-related potentials. Hybrid systems that used two or more of
these paradigms together seem to have good results since the researchers use different
paradigms to eliminate weaknesses.

Better EEG-recording systems that provide stable high-quality signals, that are com-
fortable and easy to use will improve the actual brain-computer interfaces. On the other
hand, better algorithms and signal processing techniques that improve the performance
and the accuracy of the BCIs are needed. Dry electrode systems and new machine
learning algorithms have considerable promise.

References

1. Ahmadi, S., Borhanazad, M., Tump, D., Farquhar, J., Desain, P.: Sensor tying, optimal
montages for VEP-based BCI (2019)

2. Alimardani, M., Nishio, S., Ishiguro, H.: Brain-computer interface and motor imagery
training: The role of visual feedback and embodiment. In: Evolving BCI Therapy (10 2018)
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